Understanding Electromagnetic Form Factors

Gerald A. Miller University of Washington

What do form factors really measure?

Understanding Electromagnetic Form Factors

Gerald A. Miller University of Washington

What do form factors really measure?

Not the 3 Dimensional Fourier transform of the charge or magnetization density

Outline

- 1. Introduction, motivation
- 2. Why the charge density is not the 3-dimensional Fourier transform of $G_{\rm E}$, Toy model
- 3. Use of light front/infinite momentum frame
- 4. Model independent neutron transverse charge density GAM PRL 99:112001,2007
- 5. Basic considerations for neutral systems, toy model
- Exclusive-inclusive connection elastic- deep-inelastic
 John Arrington, GAM PRC78, 032201(R) 2008
- 7. Relation between transverse density and 3-dimensional density

Experimental progress

Why form factors?

- UNDERSTAND CONFINEMENT
- How does the nucleon stick together when struck by photon?
- Where is charge and magnetization density located?
- Origin of angular momentum?
- What is the shape of the proton?

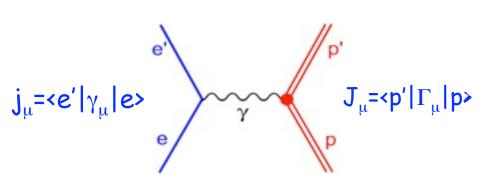
What is charge density at the center of the neutron?

- Neutron has no charge, but charge density need not vanish
- Is central density positive or negative?

Fermi: n fluctuates to $p\pi^{-}$

p at center,pion floatsto edge

Electron scattering from a nucleon



Nucleon vertex:

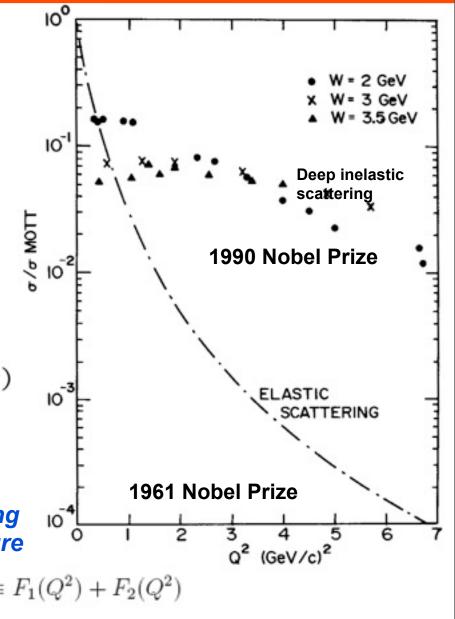
$$\Gamma_{\mu}(p,p') = \gamma_{\mu}F_{1}(Q^{2}) + \frac{i\sigma_{\mu\nu}}{2M}F_{2}(Q^{2})$$
Dirac Pauli

$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{Mott} \left(G_E^2 + \frac{\tau}{\epsilon} G_M^2\right) / (1+\tau)$$

Cross section for scattering from a point-like object

G_E, G_M Sachs Form factors describing nucleon shape/structure

$$G_E(Q^2) \equiv F_1(Q^2) - \frac{Q^2}{4M^2} F_2(Q^2), G_M(Q^2) \equiv F_1(Q^2) + F_2(Q^2)$$



Interpretation of Sachs - $G_E(Q^2)$ is Fourier transform of charge density

Correct non-relativistic:

wave function invariant under Galilean transformation

Relativistic: wave function is frame dependent, initial and final states differ

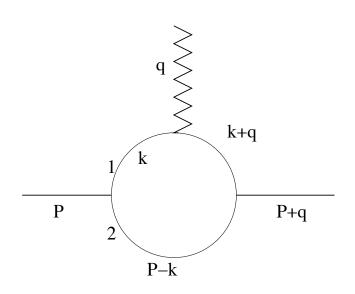
interpretation of Sachs FF is wrong

Final wave function is boosted from initial

Need relativistic treatment

Toy model

- Scalar meson, mass M made of two scalars one neutral, one charged of mass m, with M<2m (stable particle)
- Exact covariant calculation of form factor



Infinite momentum frame (Light front variables) gives exact result

When non-relativistic approximation works, Form factor is 3DFT of charge density.

When does non-relativistic approximation work?

Validity of non-relativistic approximation: M=2m-B, B=0.002 M, $\ Q^2 \leq 0.2 M^2$ very limited

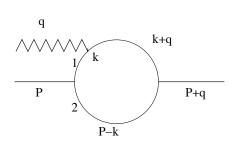
only deuteron kinematics are non-rel

Validity of non-relativistic approximation: M=2m-B, B=0.002 M, $\ Q^2 \leq 0.2 M^2$ very limited

only deuteron kinematics are non-rel

Relativity needed

Rest frame charge density is not observable



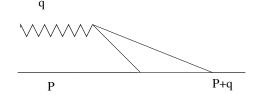


Fig. a.
$$\langle P+q|J^{\mu}(0)|P\rangle = (2P+q)^{\mu}F(Q^2) \to \frac{g^2}{(2\pi)^3}\int \frac{d^3p}{2E_1E_1'2E_2} \frac{(p_1^{\mu}+p'_1^{\mu})}{(E_P-E_1-E_2)(E_{\mathbf{P}+\mathbf{q}}-E'_1-E_2)}$$
 correct in IMF $(P\to\infty)$.

Target rest frame: $(p_1^{\mu} + p_1^{\prime \mu}) = [E_1 + E_1^{\prime}, 2\mathbf{p} + \mathbf{q}].$

$$I_{1}(\mathbf{q}^{2}) \equiv \int \frac{d^{3}p}{2E_{1}E_{1}'2E_{2}} \frac{(\sqrt{p^{2}+m^{2}}+\sqrt{(\mathbf{p}+\mathbf{q})^{2}+m^{2}})}{(E_{P}-E_{1}-E_{2})(E_{\mathbf{P}+\mathbf{q}}-E'_{1}-E_{2})}$$

$$\hat{\mathbf{q}}J_{2}(\mathbf{q}^{2}) \equiv \int \frac{d^{3}p}{2E_{1}E_{1}'2E_{2}} \frac{2\mathbf{p}}{(E_{P}-E_{1}-E_{2})(E_{\mathbf{P}+\mathbf{q}}-E'_{1}-E_{2})}$$

$$\hat{\mathbf{q}}J_{3}(\mathbf{q}^{2}) \equiv \int \frac{d^{3}p}{2E_{1}E_{1}'2E_{2}} \frac{\mathbf{q}}{(E_{P}-E_{1}-E_{2})(E_{\mathbf{P}+\mathbf{q}}-E'_{1}-E_{2})}.$$

$$(2P+q)^{\mu}F(Q^2) \to \frac{g^2}{(2\pi)^3}[I_1, \hat{\mathbf{q}}(J_2+J_3)], \quad q_{\mu}J^{\mu} = 0? = q^0I_1 - |\mathbf{q}|(J_2+J_3) \equiv CC,$$

Tuesday, June 23, 2009

Rest frame charge density is not observable

(a)

Curr. Cons. massively violated

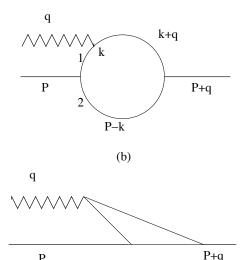


Fig. a.
$$\langle P+q|J^{\mu}(0)|P\rangle = (2P+q)^{\mu}F(Q^2) \rightarrow \frac{g^2}{(2\pi)^3}\int \frac{d^3p}{2E_1E_1'2E_2} \frac{(p_1^{\mu}+p'_1^{\mu})}{(E_P-E_1-E_2)(E_{\mathbf{P}+\mathbf{g}}-E'_1-E_2)}$$
 correct in IMF $(P\to\infty)$.

Target rest frame: $(p_1^{\mu} + p_1^{\prime \mu}) = [E_1 + E_1^{\prime}, 2\mathbf{p} + \mathbf{q}].$

$$I_{1}(\mathbf{q}^{2}) \equiv \int \frac{d^{3}p}{2E_{1}E_{1}'2E_{2}} \frac{(\sqrt{p^{2}+m^{2}}+\sqrt{(\mathbf{p}+\mathbf{q})^{2}+m^{2}})}{(E_{P}-E_{1}-E_{2})(E_{\mathbf{P}+\mathbf{q}}-E'_{1}-E_{2})}$$

$$\hat{\mathbf{q}}J_{2}(\mathbf{q}^{2}) \equiv \int \frac{d^{3}p}{2E_{1}E_{1}'2E_{2}} \frac{2\mathbf{p}}{(E_{P}-E_{1}-E_{2})(E_{\mathbf{P}+\mathbf{q}}-E'_{1}-E_{2})}$$

$$\hat{\mathbf{q}}J_{3}(\mathbf{q}^{2}) \equiv \int \frac{d^{3}p}{2E_{1}E_{1}'2E_{2}} \frac{\mathbf{q}}{(E_{P}-E_{1}-E_{2})(E_{\mathbf{P}+\mathbf{q}}-E'_{1}-E_{2})}.$$

$$(2P+q)^{\mu}F(Q^2) \to \frac{g^2}{(2\pi)^3}[I_1, \hat{\mathbf{q}}(J_2+J_3)], \quad q_{\mu}J^{\mu}=0?=q^0I_1-|\mathbf{q}|(J_2+J_3)\equiv CC,$$

Light cone coordinates/Infinite momentum frame

"Time"
$$x^+ = (ct + z)/\sqrt{2} = (x^0 + x^3)/\sqrt{2}$$

"Evolution"
$$p^{-} = (p^{0} - p^{3})/\sqrt{2}$$

"Space"
$$x^- = (ct - z)/\sqrt{2} = (x^0 - x^3)/\sqrt{2}$$
, If $x^+ = 0$, $x^- = -\sqrt{2}z$

"Momentum"
$$p^+ = (p^0 + p^3)/\sqrt{2}$$

Transverse: "Position" b "Momentum" p Perp

Relativistic formalismkinematic subgroup of Poincare

 Lorentz transformation –transverse velocity v

$$k^+ \rightarrow k^+, \mathbf{k} \rightarrow \mathbf{k} - k^+ \mathbf{v}$$

k⁻ such that k² not changed

Just like non-relativistic with k⁺ as

mass, take momentum transfer in perp
direction, then density is 2 Dimensional

Fourier Transform

Infinite Momentum Frame Charge Density

$$\hat{\rho}_{\infty}(x^{-}, \mathbf{b}) = \sum_{q} e_{q} \bar{q}(x^{-}, \mathbf{b}) \gamma^{+} q(x^{-}, \mathbf{b}) = J^{+}(x^{-}, \mathbf{b})$$

$$|p^+, \mathbf{R} = \mathbf{0}, \lambda\rangle \equiv \mathcal{N} \int \frac{d^2\mathbf{p}}{(2\pi)^2} |p^+, \mathbf{p}, \lambda\rangle$$

$$\rho_{\infty}(x^{-}, \mathbf{b}) = \langle p^{+}, \mathbf{R} = \mathbf{0}, \lambda | \hat{\rho}_{\infty}(x^{-}, \mathbf{b}) | p^{+}, \mathbf{R} = \mathbf{0}, \lambda \rangle$$

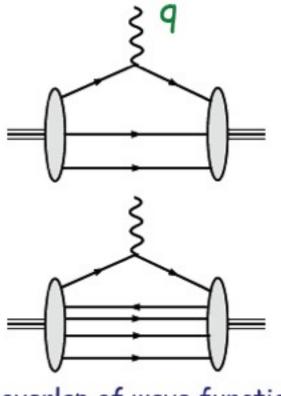
Integrate over x^- , use momentum expansion, definition of F_1 :

$$\rho(b) \equiv \int dx^{-} \rho_{\infty}(x^{-}, \mathbf{b}) = \int \frac{d^{2}q}{(2\pi)^{2}} F_{1}(Q^{2} = \mathbf{q}^{2}) e^{-i\mathbf{q}\cdot\mathbf{b}}$$

Transverse charge density

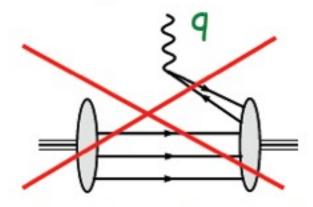
$$F_1 = \langle p^+, \mathbf{p}', \lambda | J^+(0) | p^+, \mathbf{p}, \lambda \rangle$$

interpretation of FF as quark density



overlap of wave function Fock components with same number of quarks

interpretation as probability/charge density



overlap of wave function Fock components with different number of constituents

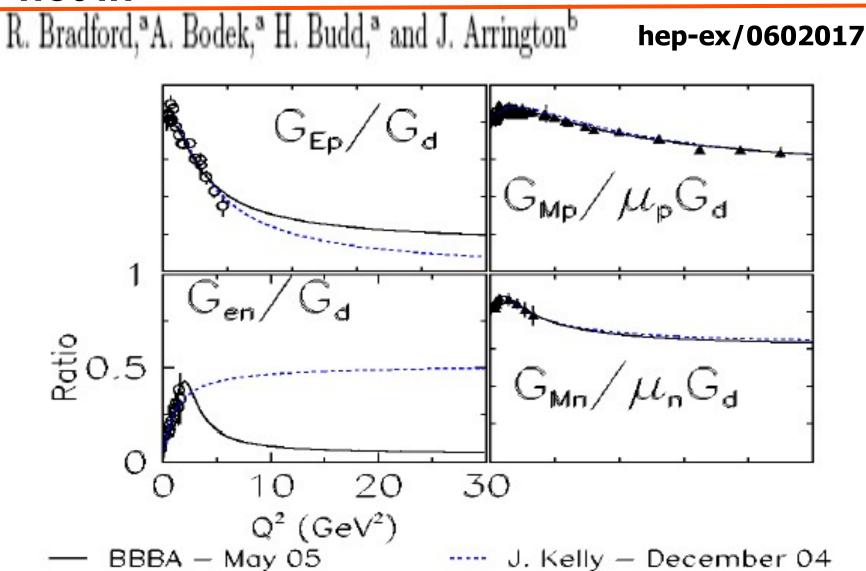
NO probability/charge density interpretation

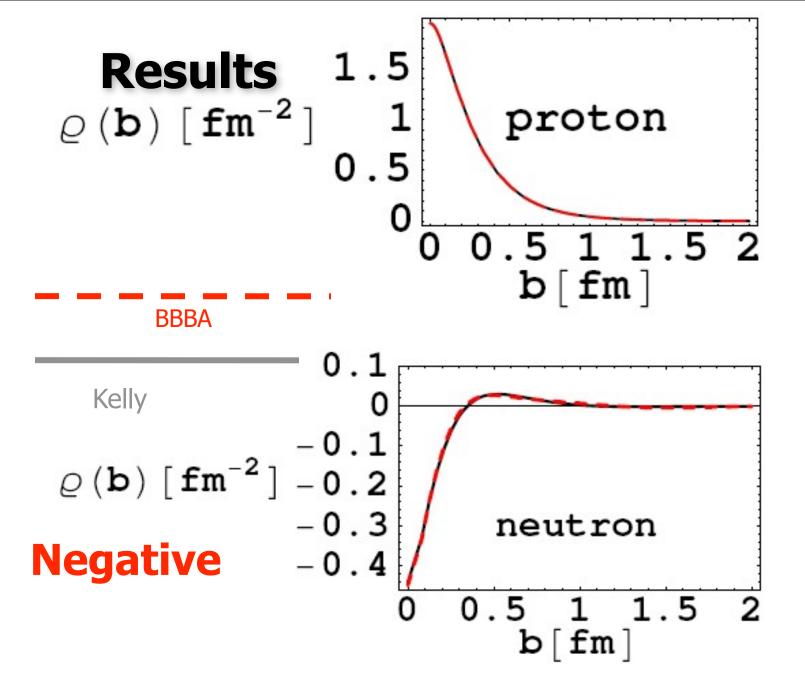
Absent in a Drell-Yan Frame

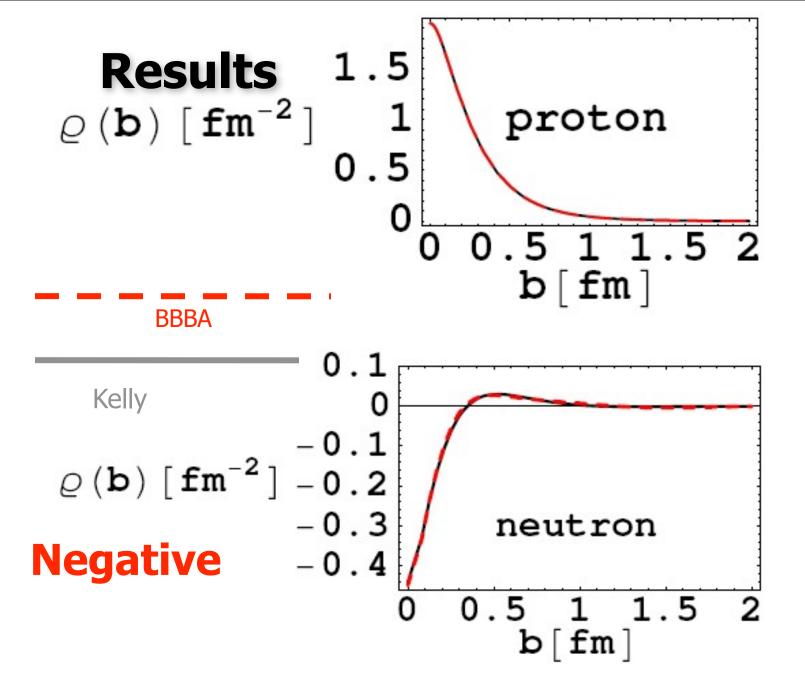
$$q^+ = q^0 + q^3 = 0$$

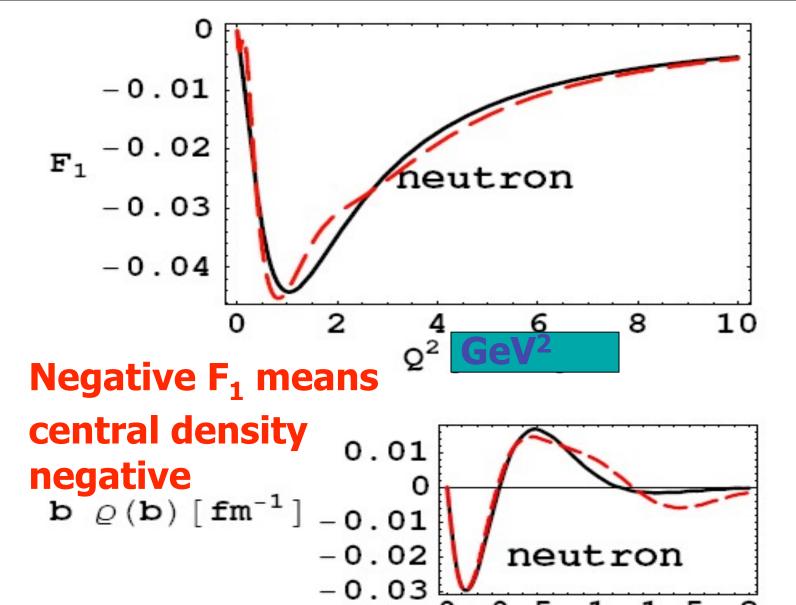
From Marc Vanderhaeghen

Parameterizations of form factors-new data not in





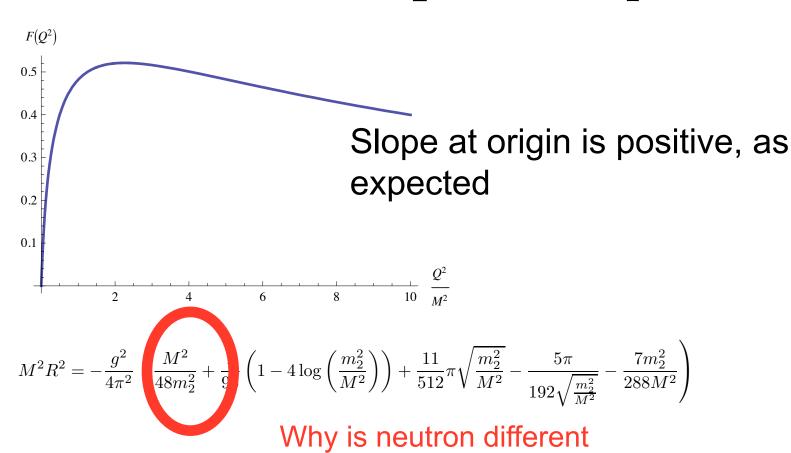




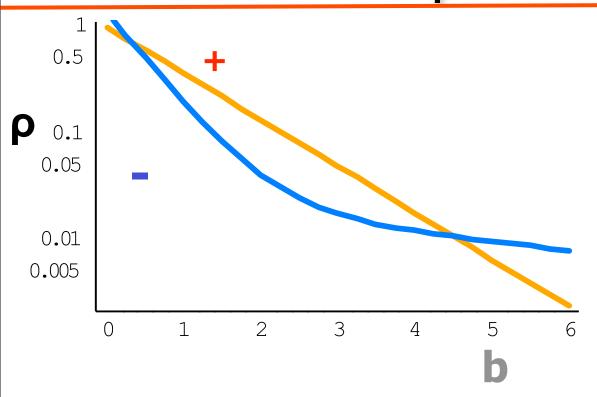
b[fm]

Neutral systems basic intuition

- particle 1, + charge, $m_1 = M$
- particle 2, charge, $m_2=0.14m_1$



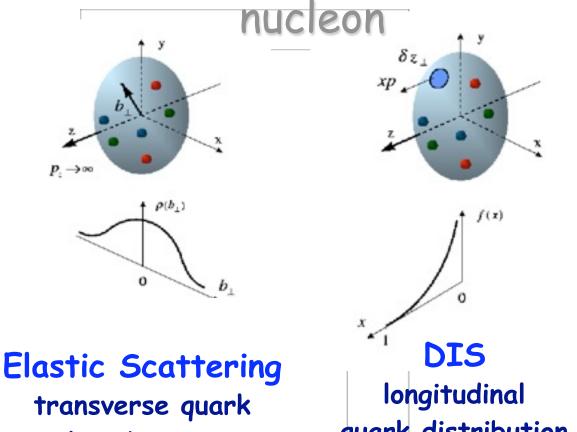
Neutron Interpretation needed



Why? What? How? Combine elastic and deep inelastic scattering information. Generalized parton distribution

Generalized Parton Distributions: yield 3-dim quark structure of

Belitsky, Ji, Yuan (2004)



distribution in coordinate space quark orbital angular momentum

quark distribution in momentum space

DES (GPDs) fully-correlated quark distribution in both coordinate and momentum space

Burkardt (2000, 2003)

 $f(x,b_1)$

Neutron negative central charge density: inclusive-exclusive connection

Gerald A. Miller John Arrington PR C 78, 032201(R) (2008)

Goal: use GPDs to understand central negative charge density

$$H_q(x,t) = \langle p^+, \mathbf{p}', \lambda | \int \frac{dx^-}{4\pi} q_+^{\dagger} \left(-\frac{x^-}{2}, \mathbf{b} \right) q_+ \left(\frac{x^-}{2}, \mathbf{b} \right) e^{ixp^+x^-} | p^+, \mathbf{p}, \lambda \rangle,$$

$$-t = -(p'-p)^2 = (\mathbf{p}'-\mathbf{p})^2 = Q^2.$$

$$H_q(x,0) = q(x), \ F_1(t) = \sum_q e_q \int dx H_q(x,t).$$

Impact parameter-dependent PDF Burkardt

Probability:

quark at ${\bf b}$ from cm has momentum fraction $x=k^+/p^+$

$$\rho_{\perp}^q(\mathbf{b},x) \equiv \langle p^+,\mathbf{R}=\mathbf{0},\lambda | \int \frac{dx^-}{4\pi} q_+^{\dagger}(-\frac{x^-}{2},\mathbf{b}) q_+(\frac{x^-}{2},\mathbf{b}) e^{ixp^+x^-} | p^+,\mathbf{R}=\mathbf{0},\lambda \rangle$$

$$\rho_{\perp}^{q}(\mathbf{b}, x) = \int \frac{d^{2}q}{(2\pi)^{2}} e^{-i \mathbf{q} \cdot \mathbf{b}} H_{q}(x, t = -\mathbf{q}^{2})$$

$$\rho(b) = \sum_{q} e_q \int dx \; \rho_{\perp}^q(\mathbf{b}, x)$$

$$\mathbf{R} = 0 = \sum_{i} x_i \mathbf{b}_i$$

Quark of x=1 at $\mathbf{b}=0$

Aim: use GPDs to investigate $\rho^q_{\perp}(\mathbf{b}, x)$

Model GPDs- fit parton distributions and form factors

Guidal et al 05, Diehl et al 05, Ahmad et al 07, Tiburzi04

Basic idea: Drell-Yan-West relation

3 valence quarks, with power law wave function and quark counting rules relate

DIS structure function & form factors

$$\lim_{Q^2 \to \infty} F_1(Q^2) = \frac{1}{Q^{2n}}, \lim_{x \to 1} \nu W_2(x) = (1-x)^{2n-1}$$

n=2 relate:high x, high Q^2 , low b

$$H_v^q(x,t) = q_v(x) \exp[f_q(x)t], \ H_v^q \equiv H^q - H^{\bar{q}}.$$

Neutron ratio u/d

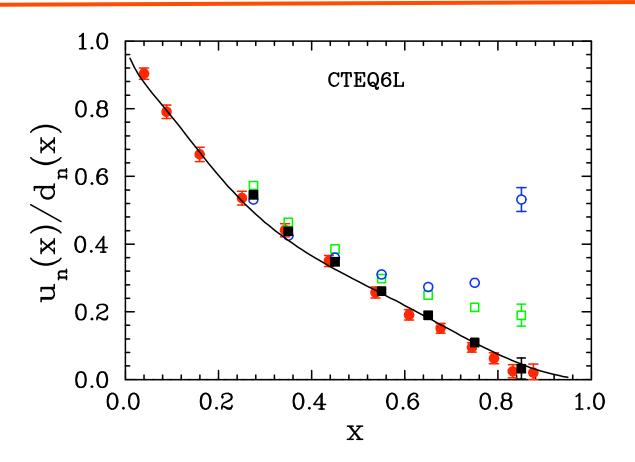
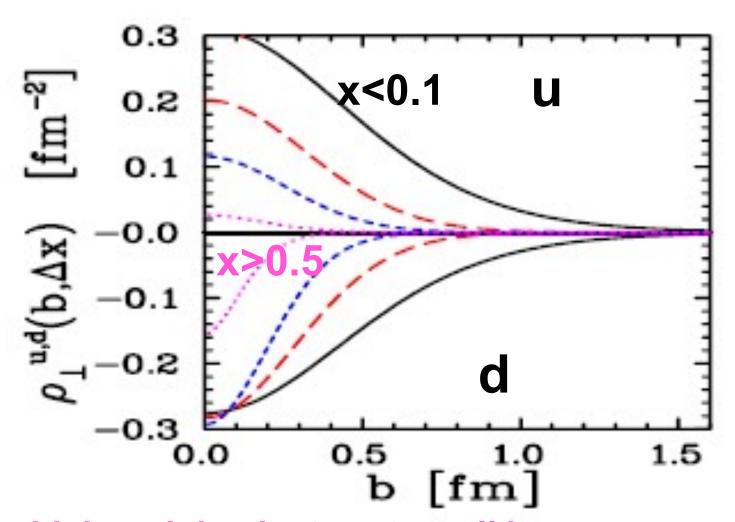


Fig. 4. Ratio of u quarks to d quarks in the neutron from several analyses of deuteron and proton data. The solid line is the CTEQ6L parameterization

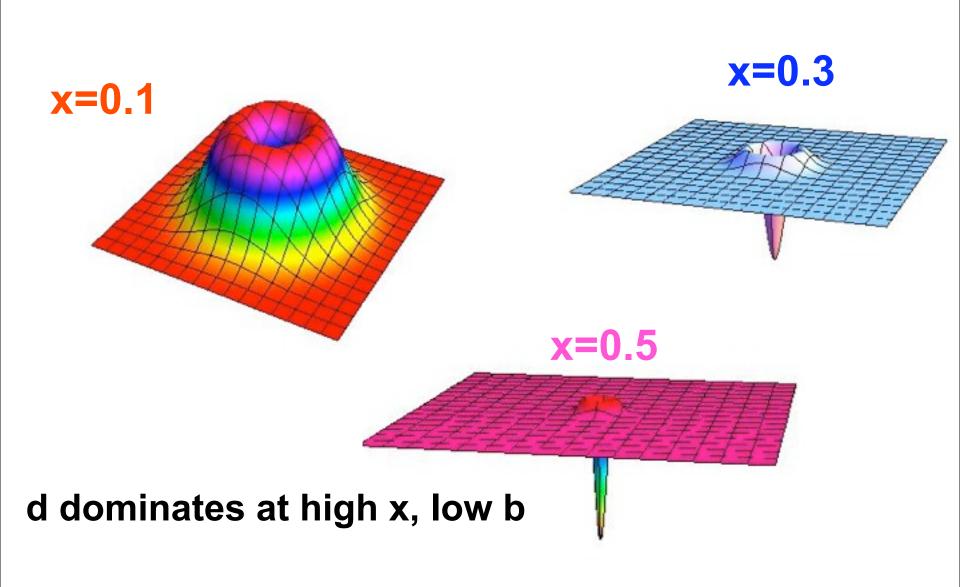
Neutron d quarks dominant at high x, to be tested

Neutron charge distribution vs x



high x: d dominates at small b

Neutron $\rho(b,x)$

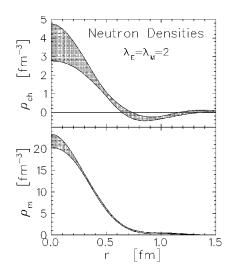


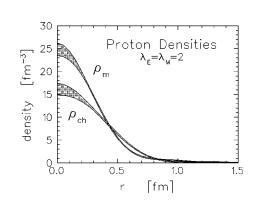
The neutron

$$\alpha = \alpha + \alpha = \alpha + \beta =$$

+

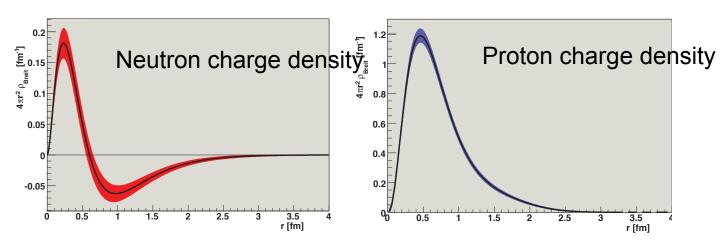
Relation between 3- dimensional and transverse densitiesexperimentalists love to 3 D F transform form factors





Kelly 2002

NSAC 2007



Sorry, not correct! No density interpretation of 3D FT of form factors

How to construct similar pictures to show experimental progress

$$\rho_1(r) \equiv \int \frac{d^3r}{(2\pi)^3} e^{-i\vec{q}\cdot\vec{r}} F_1(\vec{q}^{\,2})$$

$$r = \sqrt{b^2 + z^2}$$

$$\int_{-\infty}^{\infty} dz \, \rho_1(\sqrt{b^2 + z^2}) = \int \frac{d^2b}{(2\pi^2)} e^{-i\mathbf{b}\cdot\mathbf{q}} F_1(\mathbf{q}^2) = \rho(b)$$

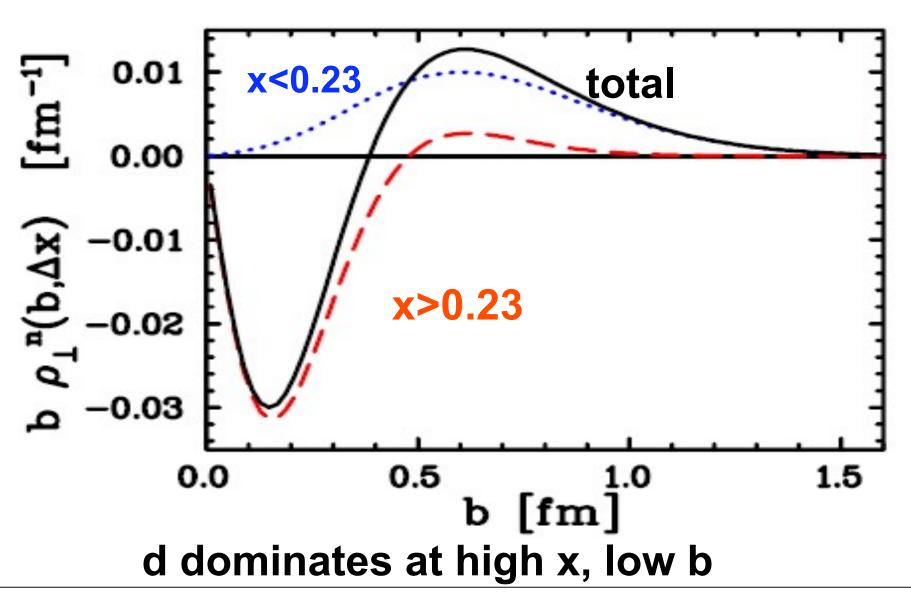
Basically-to get densities integrate the ones you had over z.

Summary

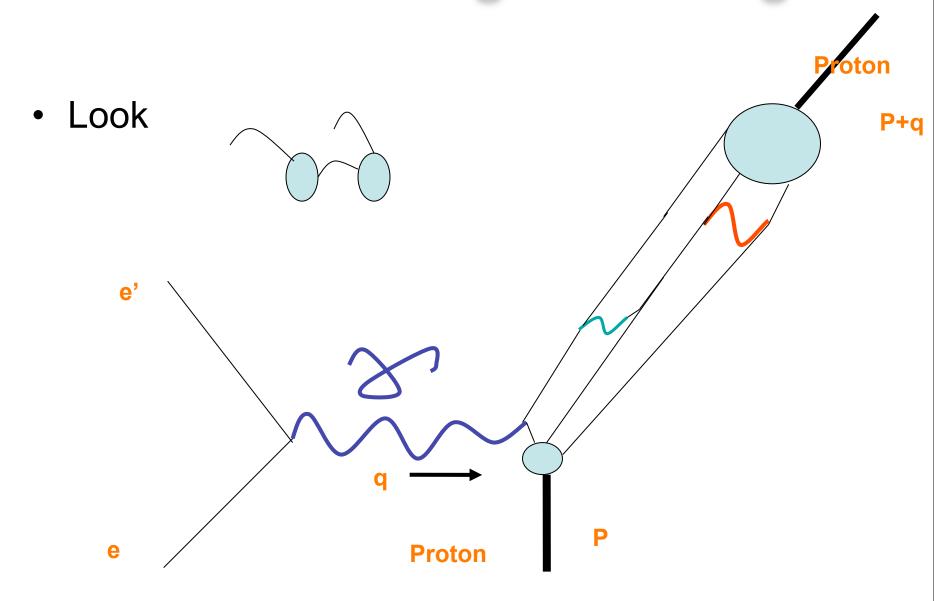
- Transverse densities give model-independent charge density in infinite momentum frame.
- 3 D FT only gives the charge density in nonrelativistic, weak binding limit -e.g nuclei.
- The central transverse charge density of neutron is negative
- There are d quarks at the center of the neutron
- Transverse density can be obtained by integration over z

Spares follow

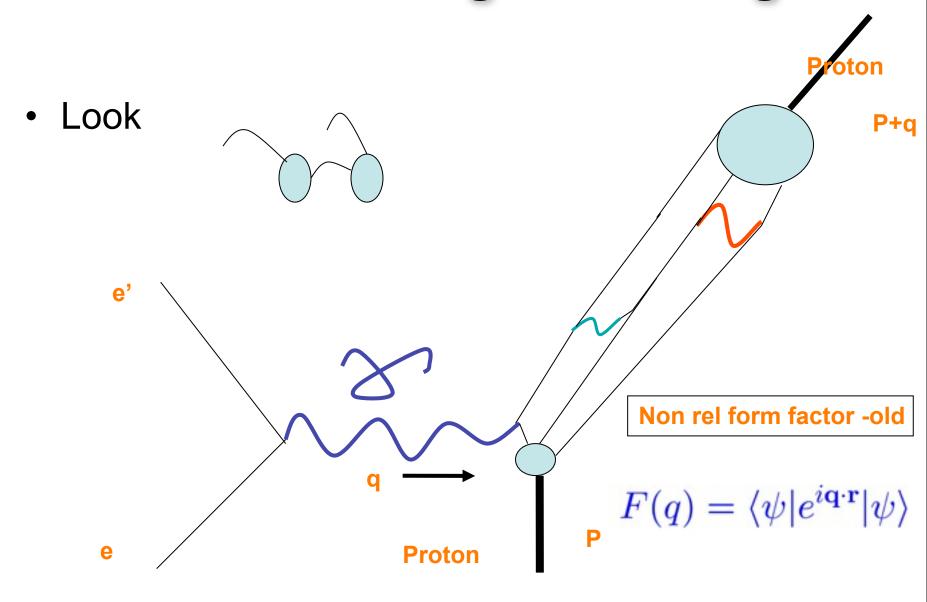
Total neutron charge distribution



How to tell how big something is?

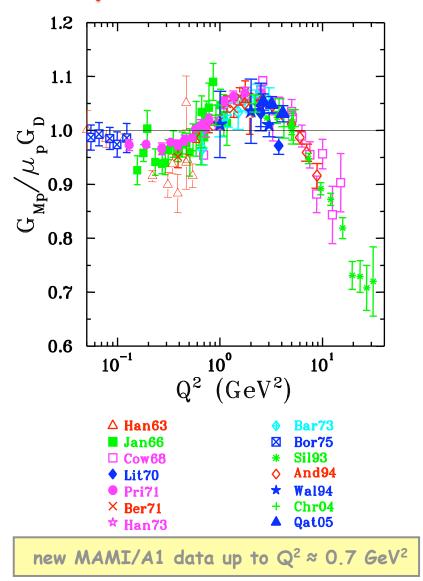


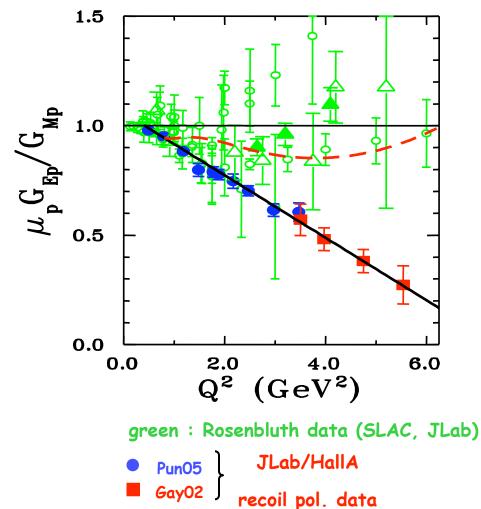
How to tell how big something is?



Structure factor

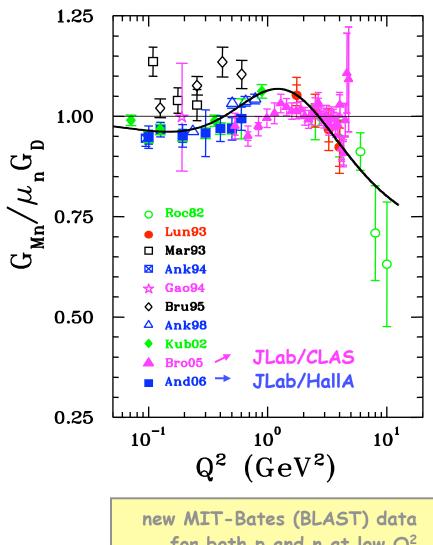
proton e.m. form factor: status

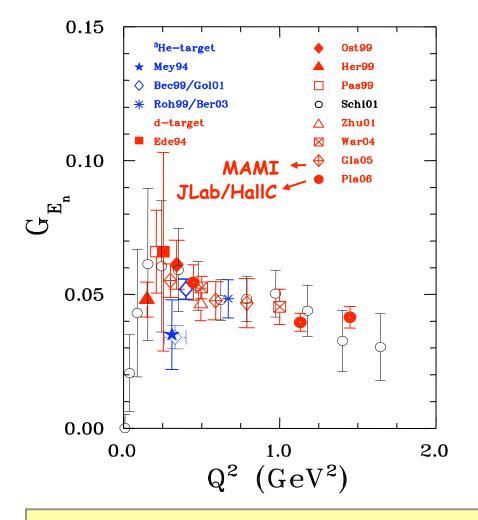




new JLab/HallC recoil pol. exp. (spring 2008) : extension up to $Q^2 \approx 8.5 \text{ GeV}^2$

neutron e.m. form factor: status





new JLab/HallA double pol. exp. (spring 07): extension up to Q² ≈ 3.5 GeV² completed

for both p and n at low Q²